FCI GF Series

Versatile High Performance Mass Flow Meter for Gas Applications

Flare Gas

Fuel Gas

Scrubber Balancing

Landfill Vapor Recovery

Exhaust Stack

Hydrogen Make-up Gas

Natural Gas Pipeline Transmission

Compressor Fuel

Combustion Air to Boilers / Furnaces

Preheater Air to Boilers / Furnaces

Wastewater Digester Gas / Biogas

Process Gas

Heavy Industrial HVAC

Nitrogen Purge

Other Gas Applications

Representantes / Distribuidores Exclusivos

Buenos Aires, Argentina Tel.: (54 - 11) 5352-2500 Email: info@dastecsrl.com.ar Web: www.dastecsrl.com.ar

GF Series Features

GF Series gas mass flow meters combine FCI's highly reliable thermal dispersion, no-moving-parts flow element design with an advanced microprocessor-based programmable transmitter. Performance and durability are unmatched in tough industrial applications ranging from exhaust stack gas to digester gas to hydrogen make-up gas flow metering

Reliability, Flexibility in Industrial Applications

The GF Series mass flow meters are available in two models: the GF90 with an insertion flow element and the GF92 with an in-line flow element. Both models feature standard 316 stainless steel, nickel braze construction. Corrosion- and abrasion-resistant alloys and all-welded construction are available for select service in harsh process environments.

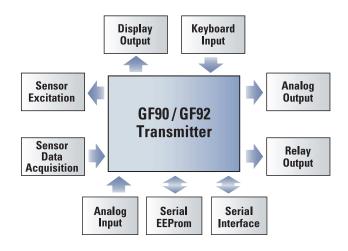
FCI's advanced constant power thermal dispersion technology provides the GF Series mass flow meters with turndowns up to 1000:1, repeatability of $\pm 0.5\%$ reading or better, and flow rate accuracy of $\pm 1\%$ reading plus 0.5% full scale.

Model GF90 Insertion Type

The GF90 is for use in ducts or pipe sizes 2.5 inches [64 mm] and larger nominal inside diameter. The standard flow element has a 1 inch male NPT process connection and an application specific insertion length. Flange connections and field retractable packing gland assemblies are also available.

Flow sensitivity ranges from 0.25 SFPS [0.08 NMPS] to 1000 SFPS [305 NMPS] at a standard temperature of 70 °F [21.1 °C] and pressure of 14.7 psia [1.013 bar(a)]. Higher flow ranges may be possible depending on application specifics; contact FCI.

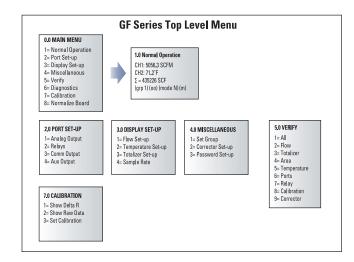
Model GF92 In-Line Type


The GF92 is used for gas mass flow metering in pipe or tubing sizes from 0.125 inches [3.2 mm] to 2 inches [51 mm]. It has a standard body length of 7.25 inches [184 mm] for installation in 1 inch [25 mm] flow tubes and 12 inches [305 mm] length for 1.5 inch [38 mm] to 2 inch [51 mm] pipe sizes. Custom lengths are also available.

Flow sensitivity ranges from 0.006 SCFM [0.01 NCMH] to 2000 SCFM [3398 NCMH] at a standard temperature of 70° F [21.1°C] and pressure of 14.7 psia [1.013 bar (a)]. Contact FCI or an FCI representative for the specific flow range sensitivity for your application.

Smart Electronics

The GF Series' microprocessor-based electronics are easily addressable via a built-in keypad or through the serial ports and allow complete in-field configuration of the instrument's parameters (e.g., the setting of relay set points, analog output's zero and span, display units, and installation and operation parameters within the calibrated instrument range). RS-232C serial port provides the ability to interface with a computer or any ASCII-oriented terminal.


Two independent analog outputs can be set in the field. Modes include: 4-20 mA, 0-10 Vdc, 0-5 Vdc, or 1-5 Vdc. Process flow rate, temperature and all GF Series functions are simultaneously available through the RS-232C serial ports.

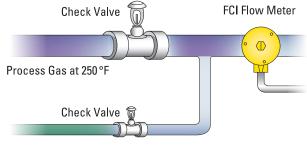
Smart Features

Outstanding features of FCI's GF Series microprocessor-based electronics include:

User-Friendly Operation and Maintenance – Start-up, verification and operation are easily performed through the keyboard and menu-driven display.

Indicator Display – Four lines by twenty character liquid crystal display indicates flow rate, total flow, temperature, relay status, current calibration mode and sample rate. Flow rate, total flow and temperature can be independently set to Imperial or Metric (SI) units.

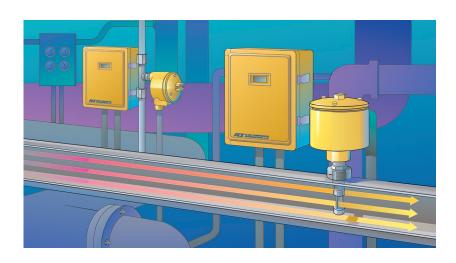
In-Field Programming — The built-in keypad permits easy touch, in-field programming to change zero, span, switch points, units of measurement, two totalizer modes, instrument verification, trouble shooting and other critical instrument functions. Built-in testing and diagnostics. Built-in testing and diagnostic capabilities ensure accurate and reliable performance. Diagnostics include out of range detection and forced relay status.


Built-In Testing and Diagnostics – Built-in testing and diagnostic capabilities ensure accurate and reliable performance. Diagnostics include out of range detection and forced relay status.

Non-Volatile Memory – Non-volatile memory prevents the loss of valuable application data and totalized flow due to loss of power.

Security – Pass-code protection offers security against both unauthorized access and equipment tampering.

Multiple Calibration Groups — Up to three calibration groups can be stored in a single GF Series transmitter. Each group can be independently configured for a specific calibration range, media, switch point settings, etc. For example, a hydrogen line that requires periodic purging with nitrogen gas can be measured with a single GF Series mass flow meter. The complete calibration data for each gas can be stored in one of three available groups. Each calibration group can be manually or automatically selected to provide an accurate indication of a specific process gas.


Example of Multi-Calibation Group Application

Nitrogen Purge at at 70°F

The three calibration groups can also be utilized to enhance or preserve accuracy over wide flow turndowns. Accurate flows with turndown ratios of 1000:1 are possible through group linkage. In addition, automatic switching between groups can also be controlled by process temperature variations.

Auxiliary Input Terminal – An auxiliary input terminal is available for connection to an external signal source. This terminal provides a method for remotely switching between calibration groups.

Enclosures — The local flow element enclosures are NEMA 4X and Ex-rated available in either aluminum or 316L stainless steel. Optionally, the sensor element can be supplied with no enclosure, with only wire or cable pigtail termination. The standard transmitter/ electronics enclosures are rugged, NEMA 4X/IP66 rated fiberglass type available with either two (2) 1 inch NPT(F) conduit ports or three (3) 21 mm openings for user installation of M20 or M25 conduit connections or cable glands. An aluminum NEMA 4X and Ex-rated enclosure with three (3) 1 inch NPT(F) conduit ports is optionally available.

Agency Approvals – System agency approvals for hazardous installations include FM, CSA, ATEX, IECEx and GOST/RTN. Additional approvals and certifications include CPA, Canadian CRN and PED, and CE mark.

Options

VeriCal™ — An in-situ calibration verification system for insertion style Model GF90 flow meter. A specially configured flow element assembly and extra bench mark calibration in the GF90 combined with a portable flow control kit. Provides "wet" field verification of calibration without removing flow meter from the pipe. Contact FCI for details or consult FCI's ST100 Series flow meter brochure.

Purge Assembly – Flow element/probe with integral plumbing and fixture for purging.

GF Series Mass Flow Meter Specifications

Application

■ Gas Mass Flow Measurement

GF90: In ducts or pipes sizes with a minimum 2.5" [64 mm] nominal inside diameter

GF92: In pipe lines or tubing sizes from 0.125" to 2" [3.2 mm to 51 mm]

Flow Element

Process Connection

GF90: 1 " Male NPT ANSI or DIN flanged

Retractable packing gland with 1.25 " NPT(M), ANSI or DIN flange **GF92:** NPT (M), NPT (F), flanged, butt weld preparation

■ Insertion Length (GF90)

Variable length; specify insertion "U" length to extend the tip of the flow element 1 " [25 mm] past the centerline of the process pipe

■ Body Length (GF92)

7.25" [184 mm] for 1" flow tubes; 12" [305 mm] for 1.5" to 3" pipe spool pieces; variable "A" lengths available

■ Material of Construction

GF90/GF92: 316L stainless steel (brazed) or Hastelloy C-276 (brazed)

GF90 with optional Verical Assembly:

316L stainless steel, all-welded

Flow Range

GF90: 0.25 SFPS to 1000 SFPS [0.08 NMPS to 305 NMPS for most gases at a standard temperature of 70 °F [21.1 °C] and pressure of 14.7 psia [1.013 bar(a)]

GF92: 0.006 SCFM to 1330 SCFM [0.01 NCMH to 3140 NCMH] for most gases at a standard temperature of 70 °F [21.1 °C] and pressure of 14.7 psia [1.013 bar(a)]

Actual velocity for both the GF90 and GF92 must be limited to a maximum of 200 FPS [61 MPS]

Operating Temperature

GF90/GF92: 40 °F to 100 °F [4 °C to 38 °C] **GF90/GF92:** -50 °F to 200 °F [-45 °C to 93 °C] **GF90/GF92:** -50 °F to 350 °F [-45 °C to 177 °C] **GF90 only:** -100 °F to 850 °F [-73 °C to 454 °C]

Operating Pressure

To 1000 psig [70 bar(g)]

Transmitter

Signal Output

Analog: Two independent signal outputs, isolated or non-isolated; field selectable as: 4-20 mA, 600 ohms maximum load

0-10 Vdc, 5000 ohms minimum load 0-5 Vdc, 2500 ohms minimum load 1-5 Vdc, 2500 ohms minimum load

Digital: RS-232C serial port **Optional:** HART output

Switch Points (Dual Alarms)

The switch points may be field set by programming the GF90 or GF92 to alarm at high, low or windowed flow or at high, low or windowed process temperature

Relays

Two independently adjustable 2 amp at 115/230 Vac or 24 Vdc

Slave Relay Energization Terminals: Customer provided relay may be energized at programmable values connecting to points on the output terminal strip

- + External Relay: 20 Vdc, sourcing up to 100 mA total both relay outputs
- External Relay: Open/ground (switching)

Power Input

AC: 115 Vac, \pm 15 Vac; 16 watts maximum **AC:** 230 Vac, \pm 30 Vac; 16 watts maximum

DC: 24 Vdc (22 Vdc to 30 Vdc); 16 watts maximum All field selectable via power input switch and wire-up terminals

■ Indicator Display and Built-In Keypad

4 lines by 20 character liquid crystal display that may be programmed to indicate flow rate, total flow, temperature, and switch point status in customer determined English or Metric (SI) values; keypad permits easy touch programming to change zero, span, switch points, and units of measurement and for instrument verification, trouble shooting and other critical instrument functions

Enclosures

Standard

Fiberglass; NEMA 4X, two (2) 1" NPT(F) conduit ports Fiberglass; NEMA 4X/IP66, three (3) 21 mm conduit/cable gland ports

Optional

Aluminum; NEMA 4/4X with window for external viewing of digital display; three (3) 1 " NPT(F) conduit ports; hazardous location rated Groups B, C, D, E, F, G and EEx d IIC

- Electrical Connection: 1 " NPT(F)
- Temperature Range: 0 °F to 150 °F [-18 °C to 66 °C]

Flow

- **Accuracy:** ±1% reading, +0.5 full scale
- Repeatability: ±0.5% reading or better

Turndown Ratio

Field set to within specified flow range from 2:1 to 100:1; turndown ratios up to 1000:1 are possible in some applications; signal output may be field set to be zero or non-zero based; up to three independent calibrations may be stored in the GF Series transmitter and selected via the built-in keypad, RS-232C serial port or auxiliary input terminal (4-20 mA)

Calibration Adjustment

Up to three (3) independent calibration groups available; each group is precisely calibrated at the factory in accordance with the submitted Application Data Sheet to turndown ratios as high as 1000:1; most calibrations are performed in the actual process fluid and process conditions described by the customer's specification; adjustment to zero and span are made easily in the field by using the keypad to input revised flow or temperature range information

Temperature

Accuracy

 ± 2 °F [± 1 °C]; valid only above minimum flowing conditions of 5 SFPS [1.5 NMPS]

Repeatability

±1°F[±0.55°C]

Agency Approvals

FM/CSA Class I, Div 2, Groups A, B, C, D

Class II, Div 1 and 2, Groups E, F, G

ATEX EEx d IIC, II 2 G/D, T4 IECEx Ex d IIC T2 or T4

Tamb (Housing) = -40C to +60C

Tamb (Sensing Element) = -40C to +177C

Canadian CRN, CPA, GOST/RTN

CE, PED

Warranty

3 years

Find your gas here?

FCI has provided thermal mass flow meter solutions for all of these and more...

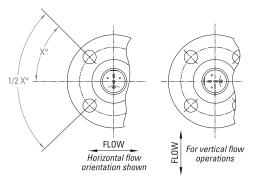
Acetaldehyde	Ethyl Acrylate	Ketene	Phenol
Acetic Acid	Ethyl Alcohol	Krypton	Phosgene
Acetone	Ethyl Amine	Landfill Gas	Propadiene
Acetonitrile	Ethyl Benzene	M-Cresol	Propane
Acetyl Chloride	Ethyl Bromide	Mercury	Propanol
Air	Ethyl Chloride	Methane	Propyl Chloride
Allyl Chloride	Ethyl Fluoride	Methanol	Propylene
Ammonia	Ethyl Mercaptan	Methyl Acetate	Propylene Oxide
Aniline	Ethylene	Methyl Alcohol	Propyne
Argon	Ethylene	Methyl Amine	P-Xylene
Benzene	Dichloride	Methyl Butane	R-11
Bio-Gas	Ethylene Oxide	Methyl Fluoride	R-12
Boron Trifluoride	Flare Gas	Methyl Formate	R-13
Bromine	Fluorine	Methyl Hexane	R-13B1
Bromobenzene	Fluorobenzene	Methyl Hydrazine	R-14
Butadiene	Fluoroform	Methyl	R-21
Butene	Freon-11	Mercaptan	R-22
Butylene Oxide	Freon-12	Methyl Octane	R-23
Butyne	Freon-13	Methyl Pentane	R-112
Carbon Dioxide	Freon-14	Methylal	R-113
Carbon Disulfide	Freon-21	Methylene	R-114
Carbon Monoxide	Freon-22	Chloride	R-114B2
Carbon	Freon-23	Morpholine	R-115
Tetrachloride	Furan	M-Xylene	R-116
Carbonyl Sulfide	Halon	Naphthalene	R-134A
Chlorine	Helium	Natural Gas	R-142B
Chlorobenzene	Heptene	N-Butane	R-152A
Chloroethane	Hexanol	N-Butane	R-216
Chloroform	Hexene	N-Butanol	R-500
Chloromethane	Hydrazine	N-Butyl Alcohol	R-502
Chloroprene	Hydrogen	N-Decane	R-503
Cis-2-Butene	Hydrogen	N-Dodecane	R-504
Cis-2-Hexene	Bromide	Neon	R-C318
Compressed Air	Hydrogen	Neopentane	Radon
Cumene	Chloride	N-Heptane	Silane
Cyanogen	Hydrogen Cyanide	N-Hexane	Silicon
Cyclobutane	Hydrogen	Nitric Oxide	Tetrachloride
Cyclohexane	Deuteride	Nitrogen	Styrene
Cyclooctane	Hydrogen	Nitrogen Dioxide	Sulfur Dioxide
Cyclopentane	Fluoride	Nitromethane	Sulfur Hexafluoride
Cyclopropane	Hydrogen lodide	Nitrous Oxide	Sulfur Trioxide
Decene	Hydrogen	N-Nonane	Superheated
Deuterium	Peroxide	N-Octane	Thiophene
Deuterium Oxide	Hydrogen Sulfide	Nonene	Titanium
Diethyl Amine	lodine	N-Pentane	Tetrachloride
Diethyl Ether	Isobutane	N-Propanol	Toluene
Diethyl Ketone	Isobutene	N-Propyl Alcohol	Trans-2-Butene
Digester Gas	Isobutyl Alcohol	N-Propyl Amine	Trimethyl Amine
Dimethyl Ether	Isoheptane	N-Undecane	Triptane
Dimethyl	Isohexane	Octene	Uranium
Propane	Isooctane	Oxygen	Hexafluoride
Dimethyl Sulfide	Isopentane	0-Xylene	Vinyl Acetate
Ethane	Isoprene	Ozone	Vinyl Chloride
Ethanol	Isopropyl Alcohol	Pentanol	Vinyl Fluoride
Ethyl Acetate	Isopropyl Amine	Pentene	Vinyl Formate

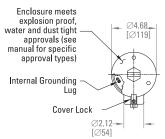
FCI's World Class Calibration Ensures Installed Accuracy

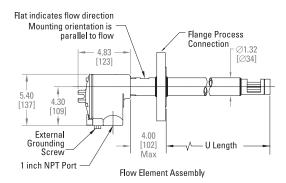
GF Series models are tested and calibrated to rigorous standards so that you get the instrument that does the job specified. To design and produce the highest quality flow instrumentation, FCI operates a world-class NIST traceable flow calibration laboratory with more than 18 flow stands certified to meet such stringent standards as MIL-STD 45662A and ANSI/NCSL Z-540.

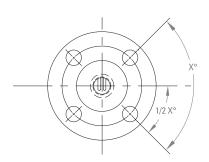
To achieve the highest possible accuracy in GF Series, FCI utilizes these precision flow stands to flow actual gases and reference fluids matched to the temperature and process conditions of your application. Further utilizing the extensive flow laboratory capabilities, FCI has developed an all new, patent pending and scientifically engineered SpectraCal gas equivalency algorithm as an economical alternative to actual gas calibration.

Other suppliers are often limited only to air calibrations and rely on non-field tested or un-validated theoretical equivalencies for other gases and gas mixtures. This procedure can be inadequate and create measurement and output errors well outside published specifications. FCI calibration capabilities are un-matched in the industry, providing you with total confidence that your installation meets its published specifications and your application needs.

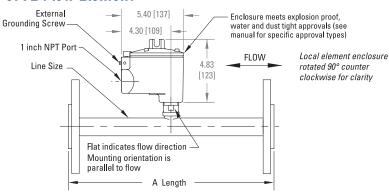

More than 18 precision flow stands to match NIST traceable fluids, process conditions, flow rates and line sizes specified in your application.

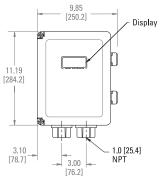


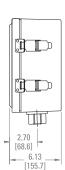


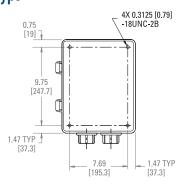


GF90 Flow Element

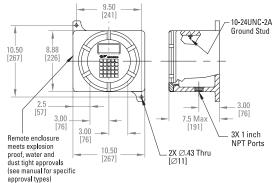





GF92 Flow Element



GF Series Remote Transmitter Enclosures


Fiberglass Type

Aluminum Type

FLUID COMPONENTS INTERNATIONAL LLC

Locally Represented By:

Representantes / Distribuidores Exclusivos

Buenos Aires, Argentina Tel.: (54 - 11) 5352-2500 Email: info@dastecsrl.com.ar Web: www.dastecsrl.com.ar

Visit FCI online at www.FluidComponents.com | FCI is ISO 9001:2000 and AS9100 Certified

FCI World Headquarters

1755 La Costa Meadows Drive | San Marcos, California 92078 USA **Phone:** 760-744-6950 **Toll Free (US):** 800-854-1993 **Fax:** 760-736-6250

FCI Europe

Persephonestraat 3-01 | 5047 TT Tilburg, The Netherlands | **Phone:** 31-13-5159989 **Fax:** 31-13-5799036

FCI Measurement and Control Technology (Beijing) Co., LTD | www.fluidcomponents.cn

Room 107, Xianfeng Building II, No.7 Kaituo Road, Shangdi IT Industry Base, Haidian District | Beijing 100085, P. R. China **Phone:** 86-10-82782381 **Fax:** 86-10-58851152

0812 1K Doc. No. 02MK011290 L